Combing Through the Tangles of Alzheimer’s

Researchers are honing in on the tau protein as a likely culprit in the development of Alzheimer’s disease.

Share to Facebook Share to Twitter Share to Linkedin Email Sign Up for Alerts Print
21_42_46210788_Hero_2400x1200a.jpg

If the brain operates like a superhighway, Alzheimer’s disease aims to tangle it with inefficient routes and traffic jams, ultimately creating a shutdown.

Researchers are still uncovering how this happens.
 

Buildup of Plaque and Tangles

It’s thought that two proteins play a critical role in the development of Alzheimer’s disease – the buildup of amyloid-β into structures called plaques and tau into structures known as neurofibrillary tangles.

For years, the focus of many Alzheimer’s researchers like David Holtzman, M.D., professor and chairman, Department of Neurology, Washington University, St. Louis, Missouri, was into the role of amyloid-β. In healthy brains, amyloid-β is produced and cleared out of the brain on a regular basis, which prevents its accumulation. Researchers focused on the abnormal buildup of amyloid-β in Alzheimer’s disease.

“While it turns out the buildup of amyloid-β does appear to be critical in instigating Alzheimer’s disease, more and more evidence suggests that amyloid-β buildup itself is not directly causing the symptoms and signs of the disease or causing the loss of nerve cells and their connections,” Holtzman says. “Instead, evidence now exists to suggest that tau accumulation is directly leading to many of the symptoms and signs of Alzheimer’s disease and the degeneration of the brain.”

Given this new understanding of the critical role of tau in brain dysfunction, researchers, including Holtzman, have focused on not only whether tau contributes to causing Alzheimer’s disease, but also whether it may be a potential target for treating it.

Tau is a normal protein that lives in the brain and, like the ties on railroad tracks, one of its purposes is to help nerve cells transport the materials they need to function. In Alzheimer’s, tau is thought to fall off the railroad tracks – and form neurofibrillary tangles.

“What happens in Alzheimer’s is that this floppy linear protein, tau, that normally organizes into a highly efficient cable starts to misfold on itself, piles up and destroys neurons, spreading from region to region until many parts of the cortex of the brain are invaded,” says Joel Braunstein, M.D., MBA, president, co-founder and CEO of C2N Diagnostics.

The abnormal accumulation of amyloid-β, but even more importantly tau, are thought to somehow play a critical role in disrupting communication among nerve cells and disturbing processes that cells need to survive.

“Tau starts building up in regions of the brain associated with memory and spatial navigation. Once those areas are affected, the first clinical symptoms of the disease, forgetfulness and often disorientation, begin to show,” says Jim Summers, Ph.D., vice president of neuroscience discovery at AbbVie.

Now researchers are beginning to understand the connection of amyloid-β and tau to Alzheimer’s. “The research community is focused on uncovering how tau misfolds, spreads and forms tangles and its relationship to amyloid-β. Unraveling these mechanisms is pointing us to new approaches to treat the disease,” Summers says.

What's Next?

In partnership with Dr. Holtzman and C2N, researchers at AbbVie are identifying ways to block the tangling of tau and how it spreads through the brain in the early stages of the disease.

“Scientific discovery, particularly with the complexities of Alzheimer’s disease, doesn’t happen in isolation,” Summers says. “Partnerships are key to us sharing knowledge and expertise, and it means we have the potential to help patients and their families at a faster pace than working alone.”
 

Identifying Those at Risk

Even with advances in the understanding of Alzheimer’s, challenges remain in identifying people at increased risk of developing it. Holtzman, together with colleague Randall Bateman, M.D., professor of neurology at Washington University, developed a platform offered by C2N that aims to identify the biomarkers for Alzheimer’s disease through a simple test. The test involves measuring different proteins in the blood or spinal fluid using a technology called mass spectrometry. Such a test could provide doctors the potential to identify those people who are more prone to the disease. Earlier screening of people with the beginnings of disease would enable managing them at an earlier age.

“Patients who are showing early signs of the disease or more importantly, before outward symptoms develop, could benefit from this type of screening so we can see what’s happening in the brain. If such a test works, we could then go on to get a more definite test for amyloid deposition with a brain scan,” Holtzman says.

AbbVie is part of a consortium of companies and academics institutions partnering with C2N on this technology.

AbbVie announced in January 2017 the start of a Phase 2 clinical trial to investigate an anti-tau antibody in early Alzheimer’s disease. To learn more about our research in neuroscience, visit our pipeline page.

Media inquiries

 

Sign Up

Jaquelin Finley
Email: jaquelin.finley@abbvie.com
Call: + 1 847-937-3998
  Stay up to date on recent news, stories and more by signing up for our topic alerts.